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Introduction 

Music Theory 

 Before going into the details of this senior project, it will be necessary to lay the 

groundwork with some understanding of music theory, particularly the musical note system for 

identifying pitches, triadic harmony and interval relations for organizing notes that happen 

simultaneously, scales for organizing notes that occur sequentially, and keys for organizing notes 

and chords alike.  

 The pitches of the Western note system we are familiar with are identified by the letters 

of the alphabet between “A” and “G”: A, B, C, D, E, F, G. When a pitch becomes a note there is 

a subtle semantic change: a pitch is synonymous with a mathematical frequency, expressed in 

hertz. A sine wave oscillating at 440 hz. is equivalent to the pitch “A”. However, so is the sine 

wave oscillating at 220 hz., and 880 hz., and so on. A note represents a pitch class - the set of all 

pitches for which the next in the set has double the frequency of the previous. In common 

musical parlance these terms are often treated interchangeably, but I think for our purposes it is 

important to be specific.  

 There are two patterns predominant in organizing notes in the Western system, two kinds 

of scale: the major scale and the minor scale. A major or minor scale consists of seven notes in 

ascending order, and it begins on a particular note, for which it is named - for instance, the C 

major scale consists of C, D, E, F, G, A, B.  

 The relations, or intervals between pitches give scales their individual characters. The 

most important interval is the octave, which is the separation between the pitch “C”, and the 

pitch “C” which has double the frequency of the first “C”. The octave is so important because 
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two notes an octave apart are at times almost imperceptibly different. If somebody with no 

training or familiarity with music was asked to sing a particular pitch, and that pitch was too high 

or low for them to sing comfortably, they would most likely be able to replicate the note in a 

different octave, possibly without realizing that they had just demonstrated an innate 

understanding of intervallic relations and pitch class. Such is the profound importance of the 

octave to music.  

 An important use of the octave concept is we can now think about pitches that are “within 

one octave”. The seven notes of the C major scale are all within one octave, because the next 

note to follow the last “B” would be the “C” an octave above the beginning of the scale. Before 

introducing more intervals, two terms will be useful to know: the whole step and the half step. 

Whole steps and half steps are integral to the function of a scale, as between each sequential note 

in a scale is either a whole step or a half step, and as one can imagine a half step is smaller than a 

whole step - twice as small. In fact in Western theory there is no interval smaller than the half 

step, making it a very useful tool: every interval can be expressed in terms of half steps. The 

following are the remaining intervals within a one octave C major scale: 

• A major second separates C and D, or two half steps 

• A major third separates C and E, or four half steps 

• A perfect fourth separates C and F, or five half steps 

• A perfect fifth separates C and G, or seven half steps 

• A major sixth separates C and A, or nine half steps 

• A major seventh separates C and B, or 11 half steps 
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 As one can perhaps guess from the necessity of terms like “major” and “perfect” 

preceding every interval, there are many named interval types, from diminished, to perfect, to 

minor and major, to augmented. It will not be necessary for our purposes to cover the details of 

this naming convention. 

 At this point we have seen seven notes, but in reality there are twelve, splitting the octave 

perfectly into equal parts. To get these additional five notes we need what are called accidentals, 

also known as “sharps” and “flats”. Accidentals are essentially alterations to a letter note name. A 

“b” character after a note name makes that note lower by a half step, and a “#” character makes 

the altered note higher by a half step. A note that has been lowered by a “b” has “flat” added to 

its name, and a note that has been raised by a “#” has “sharp” added. For example, an “A” 

lowered by a half step is an “Ab”, or “A flat”, and likewise that note raised by a half step is an 

“A#” or “A sharp”.  

 One of the most confusing concepts for new students of music theory is when to use 

sharps and when to use flats to alter a given note, as any note can theoretically be altered to be 

sharp or flat, and thus there are multiple ways to refer to the same pitch (e.g. Fb is the same as E, 

F is the same as E#, and F# is the same as Gb). It is often useful to think in terms of a scales, and 

particularly the fact that one would prefer not to have two of the same type of note in the same 

scale. For example, the sequence “A B B# D” would be better written as “A B C D”. Another 

consideration is that one would rather not mix sharps and flats when possible, so for example a 

scale based on a sharped note should use only sharp or unaltered notes, and likewise for a scale 

based on a flatted note: it should use only flat or unaltered notes.  
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 Now that we have all twelve notes to work with, we can look at the intervals within the 

counterpart to the C major scale: C minor: 

• A major second separates C and D, or two half steps 

• A minor third separates C and Eb, or three half steps 

• A perfect fourth separates C and F, or five half steps 

• A perfect fifth separates C and G, or seven half steps 

• A minor sixth separates C and Ab, or eight half steps 

• A minor seventh separates C and Bb, or ten half steps 

 It might seem at this stage as though we have covered an excessive amount of 

background information, having introduced these various structures for classifying and 

organizing pitches. What all of this is building towards, and what all of these structures have in 

common, is the answer to the question “why do some notes sound good together and some notes 

do not?” We have arrived at the notion of consonance, and by extension, dissonance: its 

opposite. Applying these terms is, to be clear, almost completely subjective. People have 

different ideas of which sounds they like to hear. However, within the Western system there is an 

agreed-upon hierarchy of sounds which, though possibly not representative of everyone’s 

experience, is integral enough to the way we think about music and harmony that it works as a 

heuristic. From most to least consonant intervals: 

• The octave/unison (e.g. C to C) 

• The perfect fifth/perfect fourth (e.g. C to G, or G to C) 

• The major third/minor sixth (e.g. C to E, or E to C) 

• The minor third/major sixth (e.g. C to Eb, or Eb to C) 
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• The major second/minor seventh (e.g. C to D, or D to C) 

• the minor second/major seventh (e.g. C to Db, or Db to C) 

• The diminished fifth/augmented fourth (e.g. C to Gb, or Gb to C) 

  

 Note that this arrangement assigns each interval to a pair, such as the pairing of the 

perfect fifth and fourth. While there is a distinguishably different effect between, say, a perfect 

fourth and a perfect fifth, these pairs of intervals are often seen as equivalent in consonance, 

because if one of their constituent pitches were taken up or down the octave so that it became 

lower/higher than the other pitch, where before it was higher/lower, the identity of the interval 

would become that of its partner in the pair. A “C” below a “G” is a perfect fifth, and a “G” 

below a “C” is a perfect fourth.  

 Intervals are a foundational element to harmony, but when most people imagine harmony 

they think of chords, or simultaneities of three notes or more. Of course, every chord is 

comprised of at least three interval relations, and these interval relations are integral to the 

structure and function of chords. For our purposes we will only need to focus on a particular kind 

of chord called a triad: a three-note chord built from notes separated by intervals of a third. 

Triads are almost always used academically as the first introduction to chordal harmony, as they 

are the simplest way to represent chords. A triad can be any three unique notes together, as long 

as they can be organized in an orientation such that each note is separated from the next note by 

some kind of third interval. The triad is identified by the name of the note which sits at the 

bottom of this stack of thirds, which is known as the root of the triad, and a quality, such as 

major, minor, augmented or diminished. For example, a C major triad is “C E G”, and you can 
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see that a major third separates “C” from “E”,  and a minor third separates “E” from “G”. 

However, a C major triad can also be “G C E”, because if “G” were taken up the octave, it would 

again form that stack of thirds. This process of swapping the order of notes in a chord is called 

inversion, and it’s the same idea we invoked on the previous page with the pairs of intervals. 

Those pairs of intervals are inversions of one another, in the same way “G C E” or “E G C” are 

inversions of “C E G”. 

 Which quality a chord has is dependent on the types of third intervals it consists of: 

• A major third under a minor third makes a major triad (ex. C E G) 

• A minor third under a major third makes a minor triad (ex. C Eb G) 

• A major third under a major third makes an augmented triad (ex. C E G#) 

• A minor third under a minor third makes a diminished triad (ex. C Eb Gb) 

 Equally important as the third intervals contained within a triad is the type of fifth 

interval between the bottom and top note. Both major and minor triads are framed by a perfect 

fifth, which is the most consonant and stable interval aside from the octave or unison. This 

means that major and minor chords themselves have a stable, consonant sound. It is difficult to 

describe this idea of “stability” in concrete terms, but a major or a minor triad sounds complete 

in itself, and would not be out of place at the end of a piece of music. They have a “resolved” 

feeling. Augmented and diminished triads, which respectively are framed by augmented and 

diminished fifth intervals, both have a much more “unstable” sound, as if their effect is to imply 

another, more stable chord to follow which will resolve the instability. It would not generally be 

as musically satisfying to finish a piece of music on one of these triads, although this can be used 
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to its own effect. It is far more common for this reason to hear major or minor chords than 

augmented or diminished chords. 

 The last and most broad organizational structure we need is the key, which can be thought 

of as the marriage of the scale and the chord. Keys, like scales and chords, are centered on a 

particular note, which is known as the tonic of the key. Other than this tonic note, there will be 

six other notes which are said to belong to this key, as well as seven triads. Keys can have the 

quality major or minor, which denotes whether a major or a minor scale is contained within the 

key. As this implies, any note which is in, for example, the C major scale is also in the key of C 

major, and likewise for the scale and key of C minor. We find the triads belonging to the key by 

creating a triad based on every degree in the key’s scale, with the stipulation that every note in 

every triad also has to belong to this scale. 

 In C major, this would go as follows: the triad based on the tonic, which itself is also 

known as the tonic, would be “C E G”, or a C major triad. Next in the scale is “D”, and this triad 

would be “D F A”, or a D minor triad. Next is “E”, and “E G B” makes E minor. “F” makes “F A 

C” or F major, “G” makes “G B D” or G major, “A” makes “A C E” or A minor, and lastly “B” 

makes “B D F” which is a B diminished triad. These triads, which consist completely of notes in 

the key, are called diatonic triads or chords, and harmony which uses only these chords is called 

diatonic harmony - after the fact that the major and minor scales are sometimes also referred to 

as diatonic scales. 

 To reiterate, the key of C major consists of the notes of the C major scale, and also the 

chords of C major, D minor, E minor, F major, G major, A minor, and B diminished. As one can 

guess this pattern of major, minor, minor, major, major, minor, diminished is repeated in every 
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major key. Because of this, music theorists use roman numerals to refer to the chords in a key, 

irrespective of the particular key tonic. The triad built on the first note is I, the second is ii, the 

third iii, followed by IV, V, vi, and viiº. The capitalization is no mistake: major chords are 

represented by upper case numerals, minor chords by lower case numerals, and diminished 

chords are denoted by a lower case numeral followed by a small circle. 

 Roman numerals are used in the analysis of sequences of chords, or “chord 

progressions”. Much could be said about chord progressions, but at a minimum we must cover 

the progression from V - I. The relationship between these two chords is the relationship between 

tonic and dominant, dominant being a word used to refer to the fifth degree of a scale, and this 

relationship is at the heart of Western tonal music. Tension and resolution, dissonance and 

consonance, stability and instability, and tonic and dominant all speak to the same idea. There are 

some sounds which have the effect of “home”, and some which need to be “resolved” before the 

listener has the feeling of “home”. The tonic is always “home”, and the dominant always wants 

to be “resolved”. This is a difficult effect to describe without an audio aid, but anybody who has 

grown up in a Western society is deeply familiar with this effect, whether they know it or not. It 

is how our music works. The reason it works is straightforward: a dominant chord contains the 

leading tone, which is the seventh degree of a scale. The leading tone is so named because it is a 

half step below the tonic, and because of the strong sense of “home” that the tonic possesses, the 

leading tone has a very strong pull towards the tonic. It is so close to the tonic, without being 

quite at the tonic, that our ears want it very badly to resolve upwards. 

 The term dominant refers specifically to the fifth scale degree, and the triad built on the 

fifth scale degree, but there are actually three diatonic triads which contain the leading tone of a 
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given key scale. These triads are all known as dominant-functioning, or simply as having a 

“dominant function”. In C major, these triads are G major, E minor, and B diminished. Not only 

do these triads all have the leading tone, in this case “B”, in common, but E minor and B 

diminished both have two notes in common with G major: E minor has “G” and “B” in common, 

and B diminished as “B” and “D” in common. This further enhances the relatedness of these 

chords, and in fact chords with different functions can be related in this way as well. A key has 

not just a tonic, but also two other chords that can function as “tonic substitutes”, because of the 

two notes they share with the tonic. In C major again, these would be A minor, which shares “C” 

and “E”, and E minor, which shares “E” and “G”. It is a strange fact that E minor, the iii chord, 

can function as both a dominant and a tonic substitute, but it just serves to show how much of 

music’s effect is dependent on context.  

 The last group of chords, the predominants, are an intermediary step - tangibly different 

from the resolved sound of the tonics, but lacking the strong pull back to the tonic that the 

dominant chords possess. The predominant chords are those with two notes in common with the 

IV chord: the ii and the vi (another chord with multiple functions). Three of these chords might 

stand out at this point: the three chords to which all the others are compared. I is the tonic, while 

the triads with enough notes in common are tonic substitutes. V is the dominant, while the two 

triads that contain the leading tone and another note in common also possess a dominant 

function. Likewise, IV is in this view the “most important” predominant, and while I would 

argue this is true to a much smaller degree than that to which I and V are the “most important” 

tonic and dominant (for example, in the jazz tradition ii is clearly the predominant of choice), it 
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is a useful simplification, and in practically every Western tonal style other than jazz it is 

certainly true. Therefore, it can be said in a way that the I, IV, and V chords together define a key. 

 All of this information pertains to the major keys. The minor keys have their own set of 

triads, built from notes diatonic to the minor scale. We’ll walk through every triad of the key of 

C minor, in the same way we did C major. First is “C Eb G”, which is the C minor triad. Next, 

“D F Ab”, which is D diminished. Following this is “Eb G Bb”, or Eb major; “F Ab C”, or F 

minor; “G Bb D”, or G minor; “Ab C Eb”, or Ab major; and “Bb D F”, or Bb major. This 

translates to roman numerals of i, iiº, III, iv, v, VI, and VII. This clearly represents a much 

different pattern than the major keys, and one might wonder if the functions of all of the triads 

remain unchanged.  

 The answer is mostly yes, with some caveats. Notice that the one very important 

difference between the major and minor scales is that unlike the major scale, the minor scale has 

no leading tone. Whereas in the major scale the seventh scale degree is a half step lower than the 

tonic, in the minor scale it is a whole step lower, and as a result has a much weaker pull towards 

the tonic. Composers, for hundreds of years, since even before tonality became codified, have 

found ways around this problem - ways to tweak the scale to give it the tension and release 

inherent in the major scale. As a result of these “tweaks”, theorists think of the minor scale as not 

a single scale, but three variations on a single scale. The first, default variation is known as the 

natural minor scale, and this is the minor scale we have used up until this point in the paper. The 

second variation of this scale is known as the harmonic minor scale, and it is the same as the 

natural minor except for the raised seventh degree, which changes the roman numerals to i, iiº, 

III+ (the plus denotes augmented), iv, V, VI, and viiº. One issue with this scale is that the raised 
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seventh degree creates an augmented second interval between the sixth degree and seventh 

degree, which tends not to mesh well with the general mood of the minor key. As a result, this 

“scale” is really only used for harmonic purposes (as the name implies), in order to make use of a 

major V chord. The third variation, known as the melodic minor, solves this issue by raising the 

sixth scale degree as well. As the name suggests, this is the scale that composers, especially in 

the 17th and 18th centuries would use for melodies atop dominant chords in a minor key. This 

alteration leads to roman numerals of i, ii, III+, IV, V, viº, and viiº. Note that the purpose of these 

three scales being merged under one umbrella is that composers generally choose the most useful 

elements of each of the three to use at any one time. So, for instance, at a given moment in a 

piece a composer might use the V of the melodic/harmonic minor, the raised sixth of the melodic 

minor, and then the next moment return immediately to the natural minor to make use of the less 

exotic major III chord.  

 With this, we have covered an adequate amount of theory to introduce the content of this 

project. On the topic of music theory there are always more details to be explored, and I have 

skipped or simplified many of them in the interest of efficiently covering the salient material. 

Before continuing onto other topics, a brief review of the pitch, the chord, and the key: 

• Pitches are vibrational frequencies of air, which in Western music we have codified 

into twelve pitch classes or notes, based on the concept that a pitch doubled in 

frequency, or an octave above, represents the same note/a member of the same pitch 

class. For example, “A” = 220 hz., and “A” = 440 hz. are the same note, but different 

pitches. 
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• A Chord is, loosely, any simultaneity of pitches, although in this paper when I refer 

to a chord I will mean a triad: a chord which is made of three notes which can be 

arranged so as to create a stack of two third intervals, for example, “C E G”, but also 

“E C G”. Chords can have different qualities, such as major or minor based on the 

types of third intervals which compose them. 

• Keys, in a way, are a unification of pitches and chords. A key can be said to be made 

up of the seven notes which constitute its scale (eg. the “C major scale” belongs to 

the “key of C major”), but a key is also a superstructure for the seven chords which 

are rooted on the seven notes in the key. For each note in the key’s scale, there is a 

triad: in the key of C Major the note C roots the chord C major, and then the note D 

roots the chord of D minor, and then E roots E Minor, etc., all the way up the scale to 

B and then beginning with C again. Another important concept is that each of these 

chords has a function within the key, and a name associated with that function: such 

as the tonic, denoted by the roman numeral I or i, subdominant, by iv or IV, or 

dominant, by v or V.  
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Generative Harmony 

 Generative music is a broad field, with connections to areas of study as disparate as 

computer science, mathematics, and linguistics. Which fields a generative music researcher finds 

themselves in contact with can have a lot to do with which aspect of music they are attempting to 

model. Linguistics, for instance, figures heavily into Fred Lerdahl and Ray Jackendoff’s 

influential book A Generative Theory of Tonal Music, which aims to assemble a “grammar” for 

generating musical phrases, similar to the way that a grammar governs our language (Lerdahl). 

Their book is focused on the aspect of music, melody and phrase construction, which linguistics 

lends its insights to best.  

 Of course, a completely comprehensive and holistic approach to generating music would 

need to consider every aspect of music, like a human composer must. In this paper, I will focus 

on one piece of the puzzle, the process of generating harmony: creating rules by which multiple 

voices can sound simultaneously in a way that is familiar to the sensibilities of Western tonal 

music. My algorithm is concerned with decisions on the small scale only; it will not keep track of 

which part of a musical phrase or larger composition it is in at any particular step in its operation, 

but at each step it goes through a careful process to ensure that each voice is “performing” a note 

which harmonizes in the most ideal way with the other voices. While melody is not really a 

concern, something called voice leading is: my algorithm strives to ensure that each voice takes 

as smooth a path as possible, and moves in small steps, or jumps, or sometimes not at all. This 

not only creates a pleasing sound, but it is often the goal in real music as well - especially vocal 

music, as melodic lines with many large leaps are difficult for the human voice. 
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 Before describing in detail the methods and results of my own approach to a generative 

harmonic system, I will introduce some prior research in this field, which was influential and in 

some cases instrumental to my work. 
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Realtime Generation of Harmonic Progressions Using Controlled Markov Selection 

 In this paper, authors Arne Eigenfeldt and Philippe Pasquier describe a method for 

generating harmony which uses a database of chords culled from jazz compositions by Miles 

Davis, Antonio Carlos Jobim, Wayne Shorter and Pat Metheny (Eigenfeldt 4), and Markov 

transition tables to generate a harmonic solution to a set of user-defined parameters. The user is 

presented with several Max/MSP function objects, allowing them to draw contours representing 

the levels of harmonic “complexity” and “tension”, and the approximate contour 

�  
Figure 1: Max/MSP function objects (Eigenfeldt 9)

of the bass voice for the duration of the piece (Eigenfeldt 6). Once the user has specified their 

requirements, the system uses a “case-based system” to select from the transition tables of first, 

second, and third-order Markov chains the solution that best matches the user’s requests of 

“complexity”, “tension”, and bass line (Eigenfeldt 3) - and the harmony is generated.

A first-order Markov system does two things: given a stream of input “events”, it 

measures how often certain events lead to other certain events (for instance, if the stream is 

musical notes, how often the note “C” follows the note “D”, etc.), and then it generates a 

“transition table”, which contains the likelihood of each measured event being followed by each 

other measured event, based on how often it occurred in the stream. This means that if the user of 

a Markov system wanted to know a suitable note to follow the note “D”, the Markov system 

would return one of the possibilities from the transition table, and it would be more likely to 

return one of the possibilities which was observed to occur more frequently. A second-order 

Markov system is the same, except that it “remembers” two events - so it decides, given two 
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events in a row, which is a likely third to follow. A third-order Markov system does the same 

again, but it “remembers” one more event, and so on for higher orders.

In the authors’ system, the “events” fed into the Markov system are chords, which are 

“observed” as they occur in the database of real compositions. They represent these chords as 

sets of semitone distances from the root, so a major triad would be (0 4 7), because the major 

third is four semitones, and the perfect fifth seven semitones from the root. Each of these pitch 

sets occupies a unique index in a table, and chord events are referenced by this index and the 

bass movement from the previous chord as a positive or negative semitone value (Eigenfeldt 4).

Harmonic “complexity” is measured by the absolute sum of a chord’s semitone difference 

from a major triad. In a section of the composition where the user has drawn a peak in the 

“complexity” contour, chords will tend to have more notes, and have a more dissonant sound. 

Harmonic “tension” is measured by the number of common tones shared between adjacent 

chords in the piece. A moment in the piece which the user has drawn to be more “tense” will be 

one where successive chords to not share many notes in common (Eigenfeldt 8).

Put together, all of this leads to the generation of a chord progression which attempts to 

respond to a user outline of the emotional contour of the composition with a solution that follows 

trends observed in the jazz literature.
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Towards a Mathematical Model of Tonality by Elaine Chew 

 Elaine Chew’s dissertation Towards a Mathematical Model of Tonality presents a novel 

model, the “Spiral Array”, for analyzing and generating Western tonal music. The Spiral Array 

consists of five rising concentric spirals occupying the same three-dimensional coordinate space, 

each spiral representing respectively pitches, major and minor chords, and major and minor keys. 

The purpose of the spirals is to allow these musical elements - pitches, chords, and keys - to be 

compared in a way that makes their distance in this three dimensional space analogous to their 

broadly perceived musical relatedness in the context of Western tonal music (Chew 3).  

 The spiral itself is based on the Harmonic Network, or Tonnetz, a development of the 

work of music theorist Hugo Riemann (Chew 33-34). The Harmonic Network arranges musical 

notes on a two-dimensional plane so that:  

• the note to the right of a given note is higher by the interval of a fifth  

• the note to the left is lower by a fifth  

• the note above and to the right is higher by a major third  

• the note below to the left is lower by a major third and  

• the note above to the left is lower by a minor third  

• and the note below to the right higher by a minor third.  

The result of all of this is that those pitches which are separated by intervals of perfect fifths or 

major and minor thirds, i.e. the intervals most fundamental to Western tonal music, will in a 

graph theory sense be the most related pitches in this network.  

 The Tonnetz inspired and continues to inspire a large body of theoretical and 

computational work. Chew’s model takes Riemann’s idea one step further. Instead of pitches 
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increasing horizontally to the right by a fifth on an infinite two dimensional grid, Chew takes this 

horizontal line of fifth relations and wraps it up and around in a cylindrical spiral. To preserve 

the spatial relationship of the two-dimensional Harmonic Network, every “node” on the spiral 

will be directly, vertically above a node which represents a pitch a major third lower, which 

means that there will be four nodes for every “turn” of the spiral. This arrangement, where the 

note directly above is a major third higher, is how the Network has sometimes been represented 

more recently, though it does differ from Riemann’s original Tonnetz, which offsets major and 

minor third relations at diagonal angles.  

 Chew’s Spiral Array has a crucial feature: when calibrated with the correct parameters it 

accurately reflects established hierarchies of pitch relationship. The intervals which are 

represented by the shortest distance on the Spiral Array are the perfect fifth/perfect fourth (these 

are equivalent), and the major third/minor sixth. The next-shortest interval distances are the 

minor third/major sixth, followed by major second/minor seventh, minor second/major seventh, 

and finally augmented fourth/diminished fifth (Chew 63). 

 This reimagining of the Harmonic Network into a three dimensional space carries another 

huge benefit. Chew outlines methods for using the locations of pitches in the Spiral Array to 

generate “centers of effect” - average locations between groups of given pitches. The center of 

effect for a note, the note a third above it, and the note a fifth above it will be essentially the 

location of the major triad, or three-note chord built on that note, and thus two spirals can be 

added, generated by finding the centers of effect for every major and minor triad. Chew then 

describes a method for doing the same with keys: by generating the center of effect of a triad, the 

triad rooted a fourth above it, and the triad rooted a fifth above it (in tonal theory these would be 
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termed the tonic, subdominant, and dominant-functioning chords - the essential building blocks 

of a key), one can find the two final spirals, consisting of all the major and minor keys (Chew 

58). 
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Flocking 

 Flocking was first outlined in Craig Reynolds’ 1987 paper “Flocks, Herds, and Schools: 

A Distributed Behavior Model.” His paper outlined a novel approach to simulating and digitally 

animating flocking, herding, and schooling behavior in animals: rather than painstakingly 

orchestrate the entire event, one could imbue each member of the flock, herd or school with the 

behaviors necessary for a flock to form organically through the interactions of the agents, or 

“boids”, as he named them (Reynolds 2). He described three crucial behaviors: 

• Collision Avoidance: boids should not collide. 

• Velocity Matching: boids should match heading and speed with their nearest 

neighbors. 

• Flock Centering: boids should be attracted to the center of the group of nearest boids 

(Reynolds 7). 

 With these behaviors implemented in each agent in one way or another, the flock/herd/

school dynamics should occur in the interactions of the elements of the flock without needing to 

be orchestrated on a macro level, and it should work regardless of the size of the flock. Collision 

avoidance will take care of impending collisions, and velocity matching will tend to maintain 

separation, as speed and heading are matched with those boids closest and thus most likely to 

create a collision. Flock centering, the boids’ attraction to their nearest neighbors, is the most 

subtle behavior. It allows such diverse benefits as boids on the outside of the flock being more 

strongly attracted to the center of the flock than those already in the center (due to the 

distribution of boids around them) and the natural parting of a flock around obstacles, as 
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ultimately the boids have no allegiance to one larger entity, only those closest to them (Reynolds 

8). 

 I originally intended to use flocking concepts in a much more literal sense than is now the 

case - having my own agents moving around a space with the classic visual effect of a moving 

flock or herd that identifies most flocking algorithms. I went in a different direction, but abstract 

ideas of the flocking tenets, such as collision avoidance, and even in a broader sense the idea of 

agents having an effect on other agents have always been at the heart of this project. Because of 

this, though my algorithm does not seem at first glance much at all like a flocking algorithm I 

will introduce one more piece of generative music research, which uses flocking concepts in a 

more overt fashion. 
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Generating Music from Flocking Dynamics 

 In their article Generating Music from Flocking Dynamics, Cristián Huepe, Marco 

Colasso, and Rodrigo F. Cádiz describe three approaches for applying flocking to music 

composition and synthesis (Huepe et al. 8). For all three approaches they used the Vicsek model 

(Vicsek et al.), a well-known minimal flocking implementation with a “noise” parameter that 

introduces states of order and disorder into the system - an easy analogy for the alternating states 

of consonance and dissonance in tonal music.  

 Their first approach they call the “direct approach”, where the amplitude and frequency 

of a sine function are respectively mapped to the x coordinate and velocity of each agent on a 

two-dimensional plane (Huepe et al. 8). This approach provided an intuitive and straightforward 

way to map flocking concepts onto musical concepts. Ultimately, however, they found this 

approach to be more visually interesting than it was sonically interesting (Huepe et al. 10).  

 The second approach, called the “coupled oscillators approach”, assigns a third variable, 

a sine function controlling sonic output, to each agent (Huepe et al. 10). This variable is affected 

not by the state of the individual agent but by interactions with other agents. Each agent is 

initialized with a “preferred frequency”, and the actual frequency for each pitch at any given time 

is the weighted average of the preferred pitches within a certain range. The authors described this 

approach as more “cohesive”, and in general creating a more subtle and interesting musical 

experience (Huepe et al. 11-12).  

 The final approach the authors cover is the “physical friction approach”, which uses 

physics calculations to model the sound that agents in proximity to one another might make in a 

real physical environment, “rubbing together” as they moved past one another (Huepe et al. 13). 



!23

Sine tones are produced with a frequency controlled by the relative speed of the agents 

producing the sound, and an amplitude controlled by the number of agents in close proximity. 

Particles don’t need to actually collide to begin producing these sounds; all particles are always 

seen to be “in contact” with their closest neighbors, and thus producing a sound that reflects their 

relative velocity to these neighbors, with the overall amplitude of a cluster of neighbors 

proportional to its size. The authors noted that this approach produced “rich textures” (Huepe et 

al. 13-15). 
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Methods 

 The core of my project is a generative compositional model which uses agent interactions 

loosely inspired by flocking dynamics, and the work of Elaine Chew - particularly her Spiral 

Array model - to produce pitches in a manner sensitive to the guidelines of Western tonality. I 

use Chew’s spiral as the environment in which the interactions occur, so that by comparison to 

the locations of the nodes on her spiral 

representing pitches, chords, and keys, I can 

analyze the movements of my agents through 

that space in terms of their movements 

through pitches, chords, and keys. In general 

during execution one Key Agent will take a 

random step in a direction, one Chord Agent 

will be aware of the location of the Key 

Agent (and thus what key it is “in”) and take 

a step towards the location of the chord best suited to that key, and three pitch agents will be 

aware of the location of the chord agent, take a step each towards the pitches best suited to that 

chord, and also avoid choosing the same destinations. Here I describe the process in detail: 

 My model has two different modes of execution, which vary by a few different features 

but operate on the same core of code. I will describe one of them first, the “random key mode”, 

as it is more complex, and then afterwards explain its differences to the other, the “chord 

sequence mode”. I begin my generative model by setting the parameters of the Spiral Array 

model to Chew’s specification: a radius of 1; a “height” of √(2/15) (height gained per quarter 

Figure 2: Top-down view of the Spiral Array, 
with the key spirals, purple and green, in the 
center; the chord spirals, orange and yellow, 
outside of that; the pitch spiral in blue outside 
of those; and the cyan cylindrical boundary 
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turn of the spiral); “alpha” of 1 (likelihood from 0 to 1 of major V chord instead of minor v chord 

in a minor key); “beta” of 1 (likelihood of minor iv chord instead of major IV chord in minor 

key); major chord pitch weights, major key chord weights, and minor key chord weights of 

[0.6025, 0.2930, 0.1145]; and minor chord pitch weights of [0.6011, 0.2121, 0.1868] (Chew 

95-96). These parameters are passed to a function called Make_Spiral(), which plots the spiral as 

well as the boundary cylinder, and then returns five matrices of uniform length - each one 

containing the coordinates to, respectively, the pitches in the spiral, the major and minor chords 

in the spiral, and the major and minor keys in the spiral, spanning three octaves. As there are 

twelve pitches in each of these three octaves, each matrix has 36 columns of three-dimensional 

coordinates. 

 After this is done I initialize the Key Agent, the Chord Agent, and the three pitch agents, 

each represented by a small MATLAB table containing its current coordinates and the name of 

the key/chord/pitch to which it is currently closest. In this step I choose where exactly each agent 

begins. I initialize some additional matrices to keep track of the movement of the agents in 

different stages of the execution, and then move into the main loop. The following describes 

sequentially one iteration of this main loop, which can be run as many times as the user defines, 

depending on the desired length of the piece. 

 First, the Key Agent takes a random step, which is then evaluated by Key_Boundary() to 

make sure it stays within the bounds of the spiral. If it does not, it simply takes a step in the 

opposite direction instead. The key location is updated, and then the Chord Agent moves 

according to the new key location, using the function Chord_Heading() to find the chord location  

closest (and therefore most consonant with) the current location of the Key Agent. 
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 As a measure of harmonic consonance, I use another function, Consonance(), within 

Chord_Heading(). Consonance() in the context that it is used here (in my program it is defined 

generally) takes the coordinates of the Chord Agent, the coordinates of the Key Agent, and the 

two lists of all of the key locations in the Spiral Array. It determines what the current key is by 

finding the closest key location to the Key Agent’s coordinates, and then returns the distance 

from the chord location to whichever of the three representations of that key in the array is 

closest. In other words, no matter which octave the Chord Agent is occupying in the array, it is 

always going to have the same relationship to a given key, which is exactly what we want from a 

measure of consonance and what a simple distance calculation would be lacking. After 

Consonance() has returned the consonance of every possible chord location, the chord location 

with the lowest (best) consonance is the new target. After this, it is time to move the pitch agents. 

 First, the function Pitch_Heading() finds a provisional new location for each of the three 

pitch agents, and in doing so it functions almost identically to Chord_Heading() - except that for 

pitches, consonance is defined in relation to the Chord Agent, and it is also not the only factor in 

determining the new target. I also calculate the “voice leading distance” for each pitch agent, 

which I define as the distance in terms of steps on a musical scale from the current pitch location 

to each other pitch location. The “voice leading distance” from a C0 to another C0 is zero, from 

C0 to C#0 is 1, from C0 to D1 is 14, etc. I use the function Smooth_Vl() to calculate this measure 

for every potential pitch target, and then I incorporate one last factor: repeats of the same note 

are tracked in the variable pitch_holds later in the execution, and this variable is passed to 

Pitch_Heading(). Sometimes one note can remain the most attractive choice for a particular 

voice for an excessive period of time, so the variable pitch_holds keeps track of how long each 
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agent has remained on the same pitch. Once a voice moves, the tally is reset for that voice. These 

three variables are combined in the following formula:  

priority = ((consonance^7 / 150) + 0.5) + (((voice_leading^4 / 60) + 0.5) / 11.83) + (pitch_holds^3 * 0.002) 

 I arrived at the formula by simple trial and error. I knew that the formula needed to make 

some subtle but important choices, so it was imperative that I get the balance between 

consonance and voice leading just right, but unfortunately in real practice they are completely 

abstract and subjective concepts from which no mathematical precepts can be derived. I made 

two tables, the one for major chords reproduced on the next page, in order to see the effect that 

different coefficients and exponents would have on note choices. Each column represents a 

consonance value, as well as the interval from the root of the chord that would carry that 

consonance value. For instance, column four has the consonance value 1.25, which is how 

consonant, for instance, an E is on top of a C major chord in my model. Each row represents a 

voice leading distance, so I included 36 rows - for the full range of zero to 35 semitones that it is 

possible for two agents to be separated by in my model. Pitch holds are a dampening factor 

which I calibrated after the rest of the formula was solidified, so they were not considered in this 

table.  

 Once I had the table, I could see the choices that the formula would make under different 

circumstances. How large of a leap, for instance, would the formula allow to happen in order to 

place a note on the root of the chord, rather than remain on the major 6th? The answer, as it turns 

out, is three semitones, or a minor third. Would the model rather leap a fifth to a major third, or 

move a half step to an augmented fourth? The answer is leap a fifth. If I ever did not like the 

answer that the formula gave me during this process, I would tweak it, and see if it produced the  
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Figure 3: Table representing note choice formula for major chords: 
priority = ((consonance^7 / 150) + 0.5) + (((voice_leading^4 / 60) + 0.5) / 11.83) + 

(pitch_holds^3 * 0.002) 

0.5 (root) 0.75 1 (P5) 1.25 (M3) 1.5 (P4) 1.75 (M6, m3, m6, M2, M7) 2  (m7) 2.25 2.5 (m2, +4)

0 0.542 0.543 0.549 0.574 0.656 0.877 1.396 2.488 4.611

1 0.544 0.545 0.550 0.575 0.658 0.879 1.397 2.490 4.613

2 0.565 0.566 0.571 0.597 0.679 0.900 1.418 2.511 4.634

3 0.656 0.657 0.663 0.688 0.770 0.991 1.510 2.603 4.725

4 0.903 0.904 0.910 0.935 1.017 1.238 1.756 2.849 4.972

5 1.423 1.424 1.429 1.455 1.537 1.758 2.276 3.369 5.492

6 2.368 2.369 2.375 2.400 2.482 2.703 3.221 4.314 6.437

7 3.925 3.926 3.932 3.957 4.039 4.260 4.778 5.871 7.994

8 6.313 6.314 6.320 6.345 6.427 6.648 7.166 8.259 10.382

9 9.786 9.787 9.792 9.818 9.900 10.121 10.639 11.732 13.855

10 14.631 14.632 14.637 14.663 14.745 14.966 15.484 16.577 18.700

11 21.169 21.170 21.176 21.201 21.283 21.504 22.023 23.115 25.238

12 29.756 29.757 29.763 29.788 29.870 30.091 30.609 31.702 33.825

13 40.780 40.781 40.787 40.812 40.894 41.115 41.634 42.727 44.849

14 54.665 54.665 54.671 54.696 54.778 55.000 55.518 56.611 58.734

15 71.865 71.866 71.872 71.897 71.979 72.200 72.719 73.811 75.934

16 92.873 92.873 92.879 92.904 92.986 93.208 93.726 94.819 96.942

17 118.211 118.212 118.217 118.242 118.325 118.546 119.064 120.157 122.280

18 148.437 148.438 148.444 148.469 148.551 148.773 149.291 150.384 152.506

19 184.145 184.146 184.151 184.176 184.259 184.480 184.998 186.091 188.214

20 225.958 225.959 225.965 225.990 226.072 226.293 226.811 227.904 230.027

21 274.536 274.537 274.543 274.568 274.650 274.871 275.390 276.483 278.605

22 330.573 330.574 330.580 330.605 330.687 330.908 331.427 332.519 334.642

23 394.796 394.796 394.802 394.827 394.909 395.131 395.649 396.742 398.865

24 467.964 467.965 467.971 467.996 468.078 468.299 468.817 469.910 472.033

25 550.873 550.874 550.880 550.905 550.987 551.208 551.727 552.820 554.942

26 644.352 644.353 644.358 644.384 644.466 644.687 645.205 646.298 648.421

27 749.262 749.263 749.268 749.293 749.376 749.597 750.115 751.208 753.331

28 866.499 866.500 866.506 866.531 866.613 866.834 867.352 868.445 870.568

29 996.993 996.994 997.000 997.025 997.107 997.328 997.847 998.940 1001.062

30 1141.709 1141.710 1141.715 1141.741 1141.823 1142.044 1142.562 1143.655 1145.778

31 1301.643 1301.643 1301.649 1301.674 1301.756 1301.978 1302.496 1303.589 1305.712

32 1477.826 1477.827 1477.833 1477.858 1477.940 1478.161 1478.679 1479.772 1481.895

33 1671.324 1671.325 1671.331 1671.356 1671.438 1671.659 1672.178 1673.270 1675.393

34 1883.236 1883.237 1883.243 1883.268 1883.350 1883.571 1884.089 1885.182 1887.305

35 2114.694 2114.695 2114.701 2114.726 2114.808 2115.029 2115.547 2116.640 2118.763
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desired result. Eventually I arrived at something which is by nature imperfect, but I believe an 

acceptable heuristic for the balance a composer must strike between ideal note choice and 

maintaining good voice leading. 

 After the provisional targets are found for each of the pitch agents, the function enters a 

loop for the purpose of checking the pitch agents for any unacceptable movement, such as two 

pitch agents occupying the same note in the same octave, or parallel fifths or octaves (when two 

notes a fifth apart move to two new notes which are also a fifth apart, or the same for two notes 

an octave apart). Parallel fifths and octaves were extremely uncommon in a certain style and era 

of music, so much so that when learning music theory they are often thought of as “off-limits”. 

My reasoning for disallowing them is slightly more pragmatic.  

 The less important reason, and this relates to the reason they were so rarely used in 

Baroque-era Classical music, is that they can sound a little bland, and contrary motion (one voice 

moving up another moving down) is almost always preferable. More importantly, if ever pitch 

agents in my model find themselves in octaves, they will without fail make the same decisions 

from that point forward. They are essentially occupying the same note, and therefore every 

potential note destination is now an equivalent distance for both agents. Two pitch agents 

mirroring one another perfectly is not something that would sound interesting. The same logic 

applies to notes in unison, except that in real three part harmony voices are almost never allowed 

to be in unison. As the model aims to create the richest harmony possible, I decided to disallow 

unisons completely - rather than allowing unisons but not parallel unison movement, as I do for 

octaves and fifths. 
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 A 1x3 array called choice_array is maintained for the three pitch agents, and it is this 

variable that keeps track of the provisional targets. The value in each of the three columns 

represents the place on the three sorted lists of targets which each of the three pitch agents will 

choose. If the first pitch agent and the second pitch agent are found to be in unison, for instance, 

the second pitch agent may move from its first to its second choice, which will represent a new, 

slightly less desirable pitch target. The checks for unisons are made in the function Pitch_Flock() 

(a nod to the collision avoidance aspect of flocking), and the checks for parallel fifths and 

octaves are made in the function P_Octave_Fix(). If any of the choices needs to be changed, this 

correction loop will happen again, in case the change has created any new issues. Once a loop 

happens with no corrections, the choice_array is used to index the target arrays for each agent, 

and they each have their new destinations. 

 This entire sequence, including all five agents, repeats as many times as the user has 

defined, and finally the path of each agent through time is plotted, either in an animated or static 

fashion, again according to the user’s specification. I earlier mentioned an alternate generation 

mode called the “chord sequence mode”, and I will explain that now. This mode exists for the 

purposes of bypassing the key agents and chord agents, in order to generate a harmonization of a 

sequence of chords that already exists. One could use any existing song as the input for this 

mode, as long as one knows its chord progression and can represent it as a string array of chord 

names. This mode requires almost no modification from the random key mode; the biggest 

difference is simply that the corresponding step in the input chord sequence is used as a 

substitute for any chord location that might have been chosen as part of the random key process. 

From that point forward, the executions are identical. 
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 All that remains, for either mode, is to create the MIDI output, and for that the function 

MidiOut() is called. MidiOut() is built to work with two MIDI tools for MATLAB written by 

Ken Schutte: matrix2midi() and writemidi(). Those two functions convert an input matrix into 

MIDI information, and then write that MIDI information to a .mid file - but in order to use them, 

I need to translate my program’s output into a matrix that can be read by matrix2midi(). 

MidiOut() fulfills that purpose, and then executes Schutte’s code.  

 First, MidiOut() initializes the empty MIDI matrix. In the MIDI matrix every row 

represents a note event, meaning there are three for every iteration of the main loop (one for each 

pitch agent), and every column represents information about that note event. Column one 

represents what track the note event belongs to: each third of the matrix belongs to a pitch agent, 

so each third will be assigned its own track. I assign every row to be in MIDI channel one and at 

volume 120; that information belongs to columns two and four respectively. Column three is the 

pitch information, which I find by mapping the pitch and octave name for the pitch agent (for 

instance, “B1”) to the MIDI notes between 48 and 83, which represent the pitches between “C0” 

and “B2”, the extent of my three octave range.  

 Note that there is a standard notation for pitches which uses this letter + number notation, 

and that I am not adhering to it, though my notation appears identical. For instance, in the 

standard notation MIDI 48, or 130.81 hz., is represented by “C3” - but in my program’s notation 

it is “C0”. I do this for the reason that a C0 in the standard notation represents the frequency at 

16 hz., which is lower even than most commercial speakers can reproduce. As I wanted to 

loosely match the range of my output to the range of the human voice, C3 is a much more 
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reasonable lower limit. However, I thought it might be confusing to start my indexing from 3, so 

I decided, for my program’s purposes alone, to refer to C3 as “C0”, C4 as “C1”, and so on. 

 Column five represents the start time of the note, and column six the end time, as 

multiples of whatever note duration I choose (I have chosen 0.5, which represents a quarter note 

in Schutte’s MIDI implementation, so every increment of time is expressed as a positive integer 

multiple of 0.5). I decided to translate every sequential repetition of a pitch to a hold of that 

pitch, which involves adjusting the end time of a held note to the point at which MidiOut() 

detects that note has changed. Because this effectively nullifies any note event that is simply a 

sequential repetition of a previous pitch, the final step is to delete those rows that represent those 

nullified note events, for they are not needed and interfere in the proper parsing of this matrix. 

 The final output of my model is a .mid file, which I open in the music notation program 

Finale. 

Figure 4: Visual output of a completed 100-step run of the Random Key model - Key Agent in black, 
Chord Agent in red, Pitch Agents in blue, green, and cyan. 
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Results 

 To illustrate numerically the output of my model, and the effect that the different 

elements of my model have on the output, I have generated several metrics tracking the behavior 

of the pitch, chord, and key agents. Because the model governing the initial pitch decisions is a 

linear combination of the output of my Consonance() and Smooth_Vl() functions, I run the 

metrics on three different models: the “combined” model, which is the full model; the 

“consonance” model, which makes pitch decisions solely on the consonance of the prospective 

pitches; and the “voice leading” model, which optimizes parsimony of voice leading in its 

decisions. These two alternative models are useful in the extremity of their results; not as viable 

alternatives to the combined model. The Consonance Model cares only for consonance, so it will 

move to whichever note is most consonant, even if that note is a huge, unperformable leap away 

from the previous. The Voice Leading model likewise cares only for how little it moves, and will 

remain in the same spot until the safeguard I wrote ensuring voices do eventually move tells it to.  

 Below is an explanation of the metrics: 

• Consonance per Step: Tallies the total average consonance between the three pitch 

agents and the chord agent at each step (and also between the Chord Agent and the 

Key Agent, if there is a key agent involved) and divides at the end by the number of 

steps. As “consonance” is no different than distance between agents per Elaine 

Chew’s Spiral model, a “lower” consonance value means the agents were more 

related, and therefore more consonant.  

• Voice Leading Distance per Step: Measures the total average semitones traveled of 

the three pitch agents at each step, and divides by the total steps.  
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• Length: Measures the total average distance traveled by the three pitch agents, the 

total distance traveled by the Chord Agent, and the total distance traveled by the Key 

Agent if there is one. 

• Speed: The Length metric divided by the number of steps. 

• Displacement: Measures the distance between the last and the first location for each 

agent, with the pitch agents averaged together. 

• Directionality Ratio: Represents Displacement divided by Length, in other words 

what percentage of the total distance traveled by the agents was in a consistent 

direction away from the origin. 

• Isotropy: Distance traveled by each agent at each step (or in the pitch agents’ case, 

average distance traveled by the three) is separated into one of twenty-seven bins, 

representing each of the twenty-seven possible directions for three-dimensional 

movement. An agent could move back, left, and down; back, left, and level; back, 

left and up; back, straight, and down; stay completely still; etc. Once the run is 

complete, the largest-valued bin is divided by the total number of bins which had 

value added to them over the course of the run, and then this value is divided by the 

Length metric, and that is the Isotropy value. Isotropy measures how dispersed the 

movement of an agent is; whether it moved in many directions over the course of its 

run or stuck to a few. Ideologically it is similar to Directionality Ratio, and under 

certain circumstances the output could be similar. It does, however, measure a subtle 

difference. Take for example an agent which moves away from the origin 10 units of 

distance on a straight line, and then back to the origin 9 units on the same line. The 
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DR would be quite low at 1 / 19 ≈ .05, as the agent traveled 19 units but was 

displaced only 1, but the Isotropy would be much higher at 10 / 2 / 19 ≈ .26, given 

that the agent only traveled two different directions. A benefit to these two metrics is 

that they both have a range of possible values from NaN (division by zero) to 1, so 

they can be directly compared in this way. 

• Fifth Displacement per Step: Measures the average distance traveled on the circle 

of fifths by the three pitch agents per step, and the distance traveled by the Chord 

Agent per step. Acts in a sense as a “displacement”, as travel can be interpreted as 

either up or down in fifths (C to G would be “up one fifth” or “down eleven fifths”), 

but whichever distance is smaller is chosen as the interpretation. So C to B is up five 

fifths, not down seven, and likewise C to Db is down five, not up seven.  

• Semitone Displacement per Step: The same as Fifth Displacement, but using 

semitone distance instead of distance on the circle of fifths, and only considering the 

averages of the three pitch agents. It is also similar to Voice Leading Distance per 

Step, but different in that VLDpS measured the semitone distance as an absolute 

value, whereas SDpS cares in which direction the travel occurred. In this case it is 

not necessary to make a determination on how to interpret the direction of travel, as 

the model provides explicit directions for which pitch in which octave to move to, 

and thus the direction of movement is given by the relationship between the current 

pitch and the chosen pitch target. 

 In order to calculate the metrics, each model (“combined”, “consonance”, and “voice 

leading”) is run simultaneously, using the same starting pitches and the same key and chord 
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agents to ensure the comparison is as accurate as possible. The metrics are then averaged over 10 

runs, with random starting locations for each agent chosen each time. To show the effect of 

different run sizes on the metrics, I run the model up to ten steps, twenty-five steps, fifty steps, 

100 steps, and 250 steps. 

Figure 5. Consonance (left) and Voice Leading (right) metrics (error bars represent 95% 
confidence intervals) 

 These two figures function as much as a sanity check as anything else - but it’s plain to 

see that the three models (and the Chord Agent) are working as intended in regards to these 

metrics. The Consonance Model runs the lowest (best) consonance values, save only for the 

Chord Agent, which in effect uses a consonance-only model of its own. The spirals containing 

the chord locations are closer to the key location spirals than the pitch location spiral, which I 

suspect is the only reason the chord agent has the best consonance performance. The Voice 

Leading Model has the highest consonance values, owing to the fact that it instructs its pitch 

agents to stay still whenever they can, despite what the chord and key agent may be doing. It is 

interesting to note the error bars on the ten-step run of the Consonance metric: there is the 

smallest bit of variance there, owing to the fact that the starting locations for pitches and chords 

and keys are randomized, and are sometimes liable to harmonize coincidentally. The more steps 
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in the run, the more likely that even on these runs which begin on a consonant note for the Voice 

Leading Model, the key and chord agents will go elsewhere and the pitch agents will continue to 

stay put, creating dissonance. 

 The Voice Leading metrics are even more extreme than the Consonance metrics, with the 

Consonance model far outstripping all others in Voice Leading Distance per Step. The 

explanation for this is simply that Consonance is not affected by octave, and if the same note in a 

different octave happens to fall to the top of the list of potential targets, even though all three 

notes are essentially in a tie for first, the model will choose to jump the octave, adding 12 or even 

24 semitones to the tally. This would of course be undesirable in the Combined Model, but the 

Consonance and Voice Leading models are meant to possess extreme behavior.   

 Between Length and Speed (Figure 6, on the next page) one can see the same 

relationships between models and agents hold, being normalized in Speed by the number of 

steps. Predictably, the Consonance Model moves far further than the rest, for the same reasons 

covered in the discussion of the Voice Leading metric. Following that discussion as well, Voice 

Leading moves the least of the pitch agent models, while Combined is in the middle. The Key 

Agent moves the least overall, owing both to the fact that its step sizes are smaller than even the 

smallest step the Chord or pitch agents could take, and that its Speed is consistent, on account of 

the fact that takes a step of very similar length every time.  

 The Chord Agent is interesting in that in the ten-step runs its Speed varies from slightly 

above the Speed of the Combined Model to near the speed of the Voice Leading Model, per the 

confidence intervals, but as the runs get larger its mean shrinks along with the error bars, past the 

Voice Leading Model and nearing the Key Agent’s tiny speed. The explanation for this is 
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Figure 6. Length metric (top left), Speed metric (top right), Displacement metric (middle), 
Isotropy metric (bottom left), Directionality Ratio metric (bottom right) - on random key run 

(error bars represent 95% confidence intervals) 

straightforward at the ten-step run: the Chord Agent’s random starting location will at times clash 

with the Key Agent’s, requiring a large shift in such cases. Other starting locations may require 

no movement at all. My belief as to why the mean tends to shrink over time, informed by 

observation of many runs, is that it is due to the inevitable periods of stagnation that the Chord 

Agent will encounter, as the Key Agent wanders but does not enter any new key areas, leaving 
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the Chord Agent with no better option than to remain at its current location. If the run does not 

begin with such a period, then the larger the run is, the more likely it is that one or more will 

occur. In other words, dramatic movement on the part of the Chord Agent is most likely to occur 

near the beginning of the run, and as the runs get larger, this beginning period means less and 

less to the average speed of the agent. Of course, in this particular 250-step run the mean of the 

Chord Agent’s speed is actually slightly higher than that of the 100-step run, so this is not always 

strictly true. 

 The Displacement graph shows a lot of noise, but some sense can be made of it. The Key 

Agent clearly displaces further the longer it is allowed to run, and if one looks at the rest of the 

agents on the whole, it appears that they largely do as well - with the possible exceptions of the 

Consonance and Voice Leading models. The Chord Agent and the Consonance Model can be 

expected to perform similarly here, as both are subject to the same chance that at any point they 

will suddenly leap the octave in their blind quest for consonance. Both show volatility in their 

confidence intervals, which are far larger than those of the other models. In general the 

Consonance Model/Chord Agent are likely to displace the most, followed by the Combined 

Model, the Voice Leading Model, and the Key Agent, a hierarchy consistent with other metrics. 

 The Isotropy and Directionality Ratio graphs show some notable differences. No agent on 

any run managed to get to an Isotropy of 1 (though judging by the error bars, the Chord Agent on 

a ten-step run may have been very close) but the Voice Leading Model apparently had a DR of 1 

on every single run (with the Chord Agent mean near 1 DR as well). This is due in part to the 

way the different metrics combine the actions of the three pitch agents constituent to each model. 

Imagine that all three pitch agents over the course of a run move the same amount, each in a 



!40

different direction. The DR will be 1, as the respective displacements and lengths will be added 

up, and these two sums divided, which must be equal and therefore divide to 1. The Isotropy will 

be less than 1, as each separate direction will be placed in a separate bin - meaning the maximum 

bin will be divided by 3, and then that number by the total length. Despite this difference, in 

general it seems the Isotropy and DR of both the Voice Leading Model and Chord Agent are 

fairly similar in contour, and while the Voice Leading Model for the above reason has much 

lower Isotropy numbers, the Chord Agent’s are only slightly smaller. 

 The rest of the models/agents have lower Isotropy than DR values as well, but the 

Consonance Model is notable in that at higher step-size runs its DR becomes lower than its 

Isotropy. Its DR is consistently below that of the Combined Model and Key Agent, but this does 

not hold true for its Isotropy. If one looks at the graph of Displacement, and then the graph of 

Length, the DR graph makes a lot of sense. DR = Displacement / Length, and as Displacement is 

practically a wash in terms of the differences between models/agents, the relationships between 

these models/agents in DR look something like an inversion of how they look in Length, with 

models/agents that traveled less distance having higher DR values, and vice versa. With this 

information, the question becomes why the Consonance Model has a higher Isotropy than 

expected relative to the other pitch models. I believe the answer to this is simply that the pitches 

in the Consonance Model are moving further at each step. It is an interesting twist, as right next 

to it on the graph is the Voice Leading Model, which has an even higher Isotropy value despite 

hardly moving at all. In the case of Voice Leading, the fact that it only moves a few times means 

the little movement it has is very concentrated. In the case of Consonance, its movement is 

varied, but its max bin is going to be fairly high, so its Isotropy will be on the higher side as well. 
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The Combined Model, a happy medium moving moderately in every way, winds up with the 

lowest Isotropy score among the pitch models, approaching even the randomly-moving Key 

Agent. 

Figure 7. Fifth Displacement (left) and Semitone Displacement (right) metrics (error bars 
represent 95% confidence intervals) 

 The Fifth Displacement plot looks almost (with the exception of the Voice Leading 

Model) as one would hope it would, given the randomness underlying this model. There is some 

volatility in the smaller runs, and by the largest run the displacement of almost all of them is at or 

very near zero. The Voice Leading Model is a clear outlier. The only real reason that the VL 

Model would have to tell one of its pitch agents to move is that the agent had already held the 

note for as many steps as it is allowed. When that happens, it will be made to target its second 

choice, which will be either a half step below, or a half step above, as those are the two smallest 

movements it can make. What do these options look like in terms of fifth displacement? Take a 

move from C to Db: up one half step. One would need to move up in fifths C to G to D to A to E 

to B to F# to C#, which is the same as Db, for a total of +7. This could be better expressed, 

however, as moving down five fifths: C to F to Bb to Eb to Ab to Db. So the metric would 

interpret an upward movement of a half step as a displacement of -5. To move down one half 
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step is just the opposite: in fifths up from C is C to G to D to A to E to B, for a displacement of 

+5.  

 All of this is simply to articulate the real mystery, which is why, when the Voice Leading 

Model is required to settle on its second choice, it so often opts to move down rather than up a 

half step. Rather than solve this mystery, I bring the reader’s attention to the Semitone 

Displacement plot, which ought at this point to be scratching heads for a similar reason. Why the 

bias towards downward motion? I can unfortunately offer no solution to that mystery other than 

confirming that the list of targets for the pitch models do indeed always appear to be sorted with 

the lower note higher up, given that all else is equal. I can only conclude from this that the issue 

comes down to a quirk of the MATLAB sort() function. 

 I presented these metrics on the random key mode of the model as a sort of “control”, 

given that the Key Agent moves randomly, and the Chord Agent mirrors exactly the Key Agent. I 

now show the same metrics on another mode of operation for my model, wherein the Key Agent 

is bypassed completely, and the Chord Agent is simply an array of chords taken as input, with the 

pitch agents acting as usual. The chord sequences I used represent a small selection of some 

different kinds of music: the changes to the jazz standard “Giant Steps” by John Coltrane, 80’s 

pop creation “Africa” by Toto, and the traditional spiritual “Amazing Grace”.  

 To make the figures, I again took the average of ten runs each, with again randomized 

starting locations for the pitch agents. Obviously the starting chord is not randomized, and there 

is only one run size considered; the size of the particular sequence of chords used as input. In the 

previous section of analysis it was the inner workings of the model under scrutiny, with the 
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“music” being a randomized baseline. In this mode some insight may be gained through the 

model’s process about the music itself. 

Figure 8. Consonance per Step (top), Voice Leading Distance per Step (middle), and Speed 
(bottom) for all three pieces (error bars represent 95% confidence intervals) 

 Here we see all of the relationships we expect to see - the Voice Leading Model scoring 

poorly in terms of Consonance per Step and the Consonance Model scoring poorly in terms of 

Voice Leading Distance per Step. One thing to note is the Voice Leading Distance per Step of the 

Consonance Model - it is lower on Amazing Grace than it is on Giant Steps or Africa. One 

possible reason for this is that the chords move more slowly in Amazing Grace (the harmonic 

rhythm is slower), as we can see reflected in the Speed metric. The slower harmonic rhythm 

means more sequences of repeated chords, allowing the Consonance Model to stay put, and 
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improving its Voice Leading performance. Of course, because of another MATLAB sorting 

quirk, it’s equally liable to jump the octave unnecessarily. 

 

Figure 9. Displacement (top), Directionality Ratio (middle), and Isotropy (bottom) for all three 
pieces (error bars represent 95% confidence intervals) 

 The Directionality Ratio for Africa is much lower than for the other two songs for all 

three pitch models, which must nearly all be due to the fact that Africa is by far the longest of the 

three songs, and so has the greatest number of steps - thus, as the Speeds are comparable 

between the three songs, the longest Length (remember: DR is Displacement / Length). We can 

also see that in general the Displacement metrics for the three songs are very comparable, further 

confirming this. The Spiral Array is a relatively confined space for these agents to travel in; in an 
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unrestricted system we might expect the Displacement to grow the longer the model runs, but in 

this case it has a ceiling. 

 Partly because of this fact, I find that as a measure of the general “dispersion” of the 

movement of the agents, Isotropy yields more nuanced results. For one, we can see how the 

chord agents compare to the other agents for every song, whereas because Giant Steps and 

Amazing Grace begin and end on the same chord, the Displacement for those two songs is zero, 

making the DR in turn zero. The differences are very small, but Amazing Grace seems to have 

the highest Isotropy for its chord agent, followed by Africa’s and then followed by Giant Steps’. I 

would have expected this result, as Amazing Grace has fewer chords, and as a result fewer 

directions to travel. This effect is what largely what drives the Consonance model pitch agents as 

well, as they will move to the most consonant note they can as soon as the chord changes. 

Figure 10. Fifth Displacement per Step (top), and Semitone Displacement per Step (bottom) for 
all three pieces (error bars represent 95% confidence intervals) 

 I’ve already covered the fact that because of MATLAB’s sorting, the model is slightly 

biased downwards in terms of semitone movement, and as a result upwards in terms of fifth 
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movement. We can see this fact somewhat borne out here, but it is interesting to see how many 

cases in which the results overcame the bias. The chord agents in Giant Steps and Amazing 

Grace both wound up with a FD of zero, which is somewhat surprising intrinsically, but does 

make musical sense. Amazing Grace is heavily centered around the I, IV, and V chords, and there 

is an inherent symmetry there, in that moving up a fourth is the same thing as moving down a 

fifth, and vice versa. Giant Steps contains another level of symmetry - segmenting the octave 

into three equal parts by stepping between chords a major third apart. The Consonance and 

Combined model metrics for Giant Steps run strongly counter to the Fifth Displacement bias, 

though they are also the most extremely negative on Giant Steps for Semitone Displacement. 

One can really only guess why this might be, given the complexity of the pitch agent dynamics, 

but one possibility may be that there is a lot of downward whole step motion, which would be a 

negative semitone displacement but also a negative fifth displacement. 
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Discussion 

 In this project I created an agent-based model for the generation of tonal harmony, based 

partially on an analytical model created by Elaine Chew. For the purpose of analysis, I then 

created two variations on the model, such as the Voice Leading and Consonance models, which 

each act on a separate facet of my full model. The Consonance Model optimizes Consonance, 

without consideration for Voice Leading Distance, and the Voice Leading Model does the 

opposite.  

 The first goal in analyzing the findings of my project was to verify some basic 

assumptions about these models, such as the fact that the Consonance model does indeed 

optimize Consonance, and the same for the Voice Leading Model and metric. Many of the 

figures I presented above served mainly to confirm these assumptions: that the Consonance 

Model has the best performance in that metric, and likewise for the Voice Leading Model, with 

the Combined Model somewhere in between. While they did serve that purpose, they also gave 

me an appreciation for the Combined Model - how it operates with subtlety, and with relatively 

simple forces at work.  

 The Consonance Model represents one of these forces: while it does produce harmonious, 

consonant sounds, it does so with no consideration whatsoever for how the individual voices 

move, leading to many bizarre melodic leaps which no human could perform. The other force, 

the Voice Leading Model, is concerned with what the Consonance model ignores: how far in 

terms of musical note distances (not distance within the model’s coordinate space) each voice 

travels. Ideally, each voice wouldn’t move at all, so that’s exactly what the Voice Leading Model 

does - until safeguards to prevent overlong holds force the voices to move. The metrics made 
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clear the extent of the extreme, uncompromising behavior of these two models. Neither are 

successful on their own, but combined in just the right way, they temper each other in a way that 

produces a reasonable approximation of what a real composer might do, under certain 

circumstances. 

 Another promising insight came with the Isotropy metric: in every Isotropy figure, the 

Combined Model always had the best performance of any pitch model, losing only to the 

randomly-moving Key Agent. This means the model does well in avoiding repetitive decisions, 

which one can only imagine would have a positive impact on how interesting the musical results 

will be. 

 One last fact that the results revealed, one which I hoped would be the case, was that the 

figures generated from the chord sequence mode contained some musical insights into the songs 

themselves, and not just the model. For instance, the Speed of the Chord Agent can be used to 

infer the harmonic rhythm of the piece, and the Isotropy measure can be an indicator of the 

variety of chords used in the piece, both of which came from my analysis of the Amazing Grace 

chord sequence. I picked that song primarily as a stylistic contrast to the other two musical 

inputs, one being a complex jazz standard and the other a lengthy pop song. I inadvertently 

created another important contrast: Amazing Grace has a very simple chord progression, as is 

typical of its idiom, and the chords change fairly slowly. Both Africa and Giant Steps use a larger 

variety of chords, and the chords change more rapidly - often every two beats, whereas in 

Amazing Grace it is rare for the chords to change more often than every three beats.  

 The Speed metric of the Chord Agent reflects the rate of chord change in the piece for 

obvious reasons: whenever the Chord Agent moves, the chord has changed, and a piece with 
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rapidly changing chords will have an often-moving chord agent. If I wanted in the future to 

design a metric specifically for this purpose I would make one small adjustment. The Speed 

metric is the Length metric divided by total steps, so it takes into account the distance the Chord 

agent traveled, not only the fact that it moved. In other words, chord agents which move to far-

flung chord locations at each step will appear “faster” than chord agents which move just as 

often but to closely-related chords. This may bear further investigation, but it only confuses the 

question of how frequently chords move, so a measure which simply tracks how often the Chord 

Agent moves would be more appropriate. 

 As for the variety of chords, the Isotropy of the Chord Agent serves as a decent measure, 

because it measures the dispersion of the agent’s movement. A large amount of movement in one 

direction will yield the highest possible value, and a small amount of movement in many 

directions will yield smaller values. If a song only contains three or four chords, as does 

Amazing Grace, there is going to be a fairy low limit to how many different directions of motion 

there can be for the Chord Agent. Although this does work in the case of my test inputs, one can 

imagine easily how using this metric for this purpose could have its flaws. Compare, for 

instance, a piece which moves to three chords in sequence, each a major third higher than the last 

- to a piece which moves between three different chords in sequence: up a fifth, down a major 

second, and up a fifth. They both have the same variety, but the piece moving in major thirds will 

have the maximum Isotropy, 1, as major-third relations in the Spiral Array are unique in that they 

are vertical on the z axis. This is an extreme example, but it demonstrates how the relative 

positions of the chord locations can have unforeseen consequences. 
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 There are many ways my model could be improved in the future, but there is in particular 

one set of improvements I’ve already begun plans to implement in the near future. While there 

may always be room to improve the expressiveness of generative musical models like mine, for 

the time being I am relatively pleased with what I was able to do with the pitch agents in my 

model. I think they largely make good and realistic decisions. The Key Agent and Chord Agent 

in their current state are useful as a baseline for the purposes of generating figures and analyzing 

the behavior of the pitch agents, but I always intended them to have a more nuanced process 

themselves, and simply ran out of time. 

 I plan to implement a system whereby just as the Chord Agent responds to the Key 

Agent, and the pitch agents respond to the Chord Agent and one another, so the Chord Agent will 

respond to the pitch agents, and the Key Agent to the Chord Agent. The Chord Agent will still 

choose a chord that is as consonant as possible with the key, but it will also take into 

consideration voice leading relationships between potential chord targets and the current location 

of the pitch agents. This will help to create pleasing melodic lines, while at the same time 

keeping the chord to choices which work well within the key.  

 The Key Agent for its part will stay still, but it will be meanwhile keeping track of the 

most recent sequence of chords that the chord agent has chosen, looking for a sequence of chords 

which could be interpreted as something called a “pivot”. Pivot chords are a consecutive 

sequence of chords which can be interpreted as inhabiting two different keys. For instance, “Em - 

G - C” could be “i - III - VI” in E minor, but it could also be “iii - V - I” in C major. They are 

called pivot chords because they are used to “pivot” between two different keys. They create an 
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ambiguous harmonic moment, which composers take advantage of to change keys in such a way 

that the listener may not even notice the shift.  

 If the key agent detects such a sequence, it will change to the other key to which the pivot 

sequence could be interpreted as belonging. This change will then of course reflect in the chord 

agent’s choices, as it must now choose chords that work well with this new key, and so on down 

the line to the pitch agents. I believe this will make the output of my model many times more 

interesting, and give it much more creative and expressive potential. 
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